Selasa, 28 Januari 2014

Definisi Induksi Matematika


Induksi matematika merupakan suatu teknik
untuk membuktikan suatu pernyataan matematika apakah benar atau salah. Seringkali kita hanya menerima saja pernyataan atau argumen matematika, tanpa mengetahui kebenaran pernyataan tersebut. Oleh karena itu kita membutuhkan suatu metode untuk membuktikan kebenaran pernyataan matematika yang disebut induksi matematika. Melalui induksi matematika kita dapat mengurangi langkah-langkah pembuktian bahwa semua bilangan bulat termasuk ke dalam suatu himpunan kebenaran dengan hanya sejumlah langkah terbatas.

Sebuah bukti implisit dengan induksi matematika untuk urutan aritmatika diperkenalkan dalam al-Fakhri yang ditulis oleh al-Karaji sekitar 1000 Masehi, yang menggunakannya untuk membuktikan teorema binomial dan sifat segitiga Pascal. Selain al-Fakhri terdapat juga ilmuwan Yunani kuno yang membuktikan induksi matematika untuk menyatakan bahwa sifat bilangan prima yang tidak terbatas. Tidak satupun ahli matematika kuno yang dapat membuktikan induksi matematika secara eksplisit. Barulah pada tahun 1665 ilmuwan Prancis yang bernama Blaise Pascal dapat membuktikannya secara eksplisit. Bukti induksi secara eksplisit dia tuliskan dalam bukunya yang berjudul arithmétique segitiga du Traité. Pada akhir abad ke-19 ilmu induksi matematika diperbarui kembali oleh dua orang matematikawan yang bernama R. Dedekind dan G. Peano. Dedekind mengembangkan sekumpulan aksioma yang menggambarkan bilangan bulat positif. Peano memperbaiki aksioma tersebut dan memberikan interpretasi logis. Keseluruhan aksioma tersebutTidak satupun ahli matematika kuno yang dapat membuktikan induksi matematika secara eksplisit. Barulah pada tahun 1665 ilmuwan Prancis yang bernama Blaise Pascal dapat membuktikannya secara eksplisit. Bukti induksi secara eksplisit dia tuliskan dalam bukunya yang berjudul arithmétique segitiga du Traité. Pada akhir abad ke-19 ilmu induksi matematika diperbarui kembali oleh dua orang matematikawan yang bernama R. Dedekind dan G. Peano. Dedekind mengembangkan sekumpulan aksioma yang menggambarkan bilangan bulat positif. Peano memperbaiki aksioma tersebut dan memberikan interpretasi logis. Keseluruhan aksioma tersebutdinamakan Postulat Peano.

Ditulis Oleh : Unknown // 21.16
Kategori:

0 komentar:

Posting Komentar

 
Khamdani Aks. Diberdayakan oleh Blogger.